酸と塩基

定義

- ・アレニウス(1884年) H⁺を出す物質が酸、OH⁻を出す物質が塩基
- ・ブレンステッド/ローリー(1923 年) H⁺を与える物質が酸、受け取る物質が塩基 NH₃ + H⁺ → NH₄⁺
- ・ルイス(1923 年) 電子対受け取る**物質が酸、与える物質が塩基** H⁺ + H₂O:→ H₃O⁺

強酸と弱酸

・強酸:水中で完全電離

$$\alpha = [A^-] / [HA]_0$$

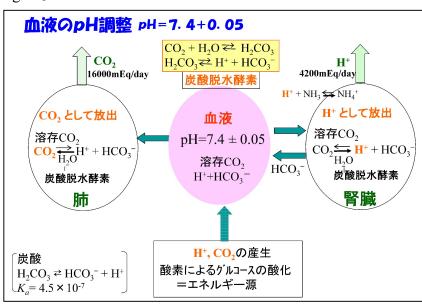
・弱酸:一部が電離
$$HA \to H^+ + A^ K_a = \frac{[H^+][A^-]}{[HA]} = \frac{c\alpha c\alpha}{c(1-\alpha)} \approx c\alpha^2$$
 酢酸 $CH_3COOH \approx CH_3COO^- + H^+$ $K_a = 2.8 \times 10^{-5}$ 炭酸 $H_2CO_3 \approx HCO_3^- + H^+$ $K_a = 4.5 \times 10^{-7}$

水素イオン指数

・pH= $-\log[H^+]$ 強酸 $-\log c$ 弱酸 $-\frac{1}{2}\log cK_a$

水のイオン積 $K_W = [H^+][OH^-] = 1.0 \times 10^{-14} \pmod{L^{-1}}^2$ at 25°C 塩基平衡定数

• B + H₂O
$$\rightarrow$$
 HB⁺ + OH⁻ $K_b = \frac{[\text{HB}^+][\text{O}H^-]}{[\text{B}]} = \frac{c\alpha c\alpha}{c(1-\alpha)} \approx c\alpha^2$


・弱塩基の pH $-\log K_W + -\frac{1}{2}\log cK_b$

緩衝溶液

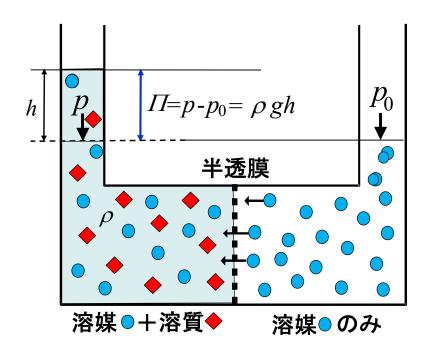
・
$$HA \rightleftharpoons H^+ + A^-$$
 弱酸 CH_3COOH 濃度 c_a $MA \rightarrow M^+ + A^-$ 弱酸の塩 CH_3COONa 濃度 c_b (完全電離) $H_2O \rightleftharpoons H^+ + OH^-$ 水の平衡・緩衝溶液の pH

 $pH = -\log K_a + \log \frac{c_b}{c_a}$

演示実験あり

・Henderson-Hasselbalch の式

$$pH = 6.1 + log \frac{[HCO_3^-]}{0.03 \times PaCO_2}$$
 動脈血の CO_2 分圧


- ・pHが下がると腎臓からHCO3⁻が供給される。
- ・pH が上がると呼吸数を増やして肺から CO2 を放出する。

2. 浸透圧

浸透圧の式 $\Pi = nRT$

atm mol/L \ K 気体定数 0.082 Latm K⁻¹ mol⁻¹

体液を考える場合には圧力単位で考えず、粒子数濃度 (mmol/L)で浸透圧表し、これをmOsm/Lと記述する。

0.9%NaCl溶液の浸透圧

n=9/58.44 mol/L電離しているので、 粒子数はこの2倍 *T*=298.16K (25°C) を式に代入すると、 *∏*=7.5 atmという大き な値になる。

mOsm単位では

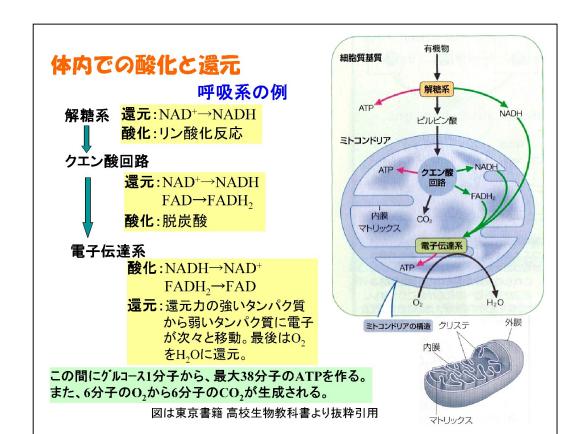
308 mOsm/Lとなり、 ↓実際には85%解離なので、 285 mOsm/L程度である。

5%ブドウ糖液の浸透圧

n=50/180 mol/L電離してない。 mOsm単位では 278 mOsm/Lとなる。

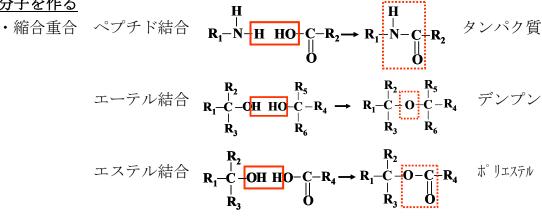
血液の浸透圧 285 ± 5 mOsm/L

3. 酸化と還元


・酸化と還元

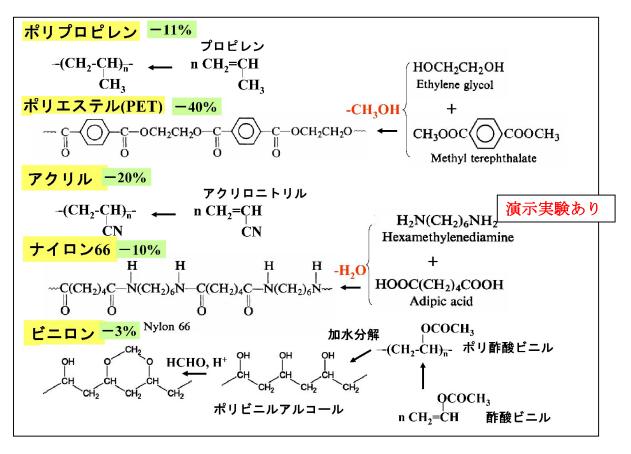
「酸化:酸素と結合すること $\mathbf{A} + \mathbf{O} \rightarrow \mathbf{AO}$ $\mathrm{CH_4} + 2\mathrm{O_2} \rightarrow \mathrm{CO_2} + 2\mathrm{H_2O}$

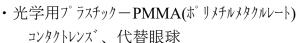
し還元:水素と結合すること $\mathbf{B} + \mathbf{H} \rightarrow \mathbf{B} \mathbf{H}$ $\mathbf{C}_2\mathbf{H}_4 + \mathbf{H}_2 \rightarrow \mathbf{C}_2\mathbf{H}_6$

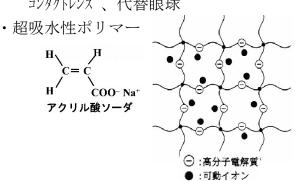

 $\left\{ egin{array}{ll} 酸化:物質から電子を取ること <math>A
ightarrow A^+ + e \end{array}
ight.$

「還元:物質に電子を与えること $B + e \rightarrow B^-$ 一方の物質が酸化 されれば、他方は還 元されている

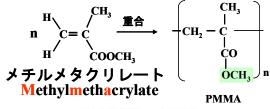
4. 高分子の話

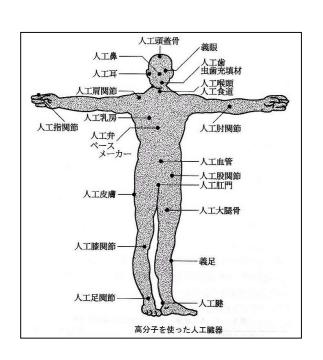

高分子を作る




付加重合

$$X^{\bullet} \longrightarrow {}^{\bullet}CH_{2} \stackrel{\bullet}{=}{}^{\bullet}CH_{2} \stackrel{\bullet}{=}{}^{\bullet}CH_{2} \stackrel{\bullet}{=}{}^{\bullet}CH_{2} \stackrel{\bullet}{=}{}^{\bullet}CH_{3} \stackrel{\bullet$$


両側から1つずつ電子が 供給されて結合ができる


:架橋点

吸水性樹脂の吸水能力

化学組成	形態	大きさ (メッシュ)	吸収能(倍)	
			純水	0.9%の食塩木
アクリル酸・ビニルアル コール共重合体	白色球状	200	500-700	40-60
"	白色粉末	20	"	"
アクリル酸ソーダ重合体	白色顆粒	200	900-1200	60-80

- 酸素吸入器
- その他の医用プラスチック

